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Motions of fluid particles advected by a vortex soliton are studied. In a reference
frame which moves with the vortex soliton, particle motions are confined in a torus
near the loop part of the vortex soliton for a wide range of three parameters that
characterize the shape and strength of the vortex soliton. The transported volume is
calculated numerically as a function of these parameters. The product of the volume
and the translational velocity of the soliton provides the rate of transport. Using this
quantity, the optimized shape of the soliton for the maximum rate of transport is
considered. The torus is composed of groups of invariant surfaces around periodic
trajectories. Similar phenomena are observed with the KAM tori for non-integrable
Hamiltonian systems. To extract the essential mechanism of the transport properties,
an ordinary differential equation model is proposed, which is named the ‘chopsticks
model’. This model successfully explains the qualitative features of the transport.

1. Introduction
Transport of fluid particles by an isolated vortex has been a fundamental problem

which, particularly if a vortex moves steadily, provides a direct example of long-
surviving advection of materials in fluids. In this context, we can use the transport
of fluid volume by a vortex ring as an example. Batchelor (1967) showed types of
closed streamlines relative to a thin vortex ring as a function of the parameter ε/a,
where ε is the core radius and a is the curvature radius of the vortex ring. (The
appearance of such a parameter ε/a in the discussion of motion of a thin curved
vortex is endemic because the asymptotic velocity as ε → 0 in the Biot-Savart integral
has a term proportional to log(a/ε)/a, and thus velocity diverges for a vortex filament
with zero radius.) From the viewpoint of transport, the volume surrounded by the
outermost closed streamlines is the quantity carried by the vortex ring, which can be
evaluated by means of the elliptic integrals. This situation can be extended to any
two-dimensional steady flow fields including axisymmetric ones so that existence of
closed streamlines always indicates existence of trapped fluid particles inside, which
amounts to finite transport volume (Batchelor 1956; Kraichnan 1970; Rhines &
Young 1983). Furthermore, if we recall that a two-dimensional incompressible flow
is always equivalent to a Hamilton dynamical system of one degree of freedom with
the streamfunction, ψ(x, y), as Hamiltonian (Aref 1991), and that there are always
closed level curves, ψ(x, y) = c, around an elliptic fixed point, we have a finite-volume
transport if there is an elliptic fixed point in two-dimensional flows. For finding fixed
points in two-dimensional vector fields, in general, methods such as calculation of
rotation number can be used (Grimshaw 1990).



202 Y. Kimura and S. Koikari

The main objective of this paper is to demonstrate an example of finite-volume
transport by a three-dimensional thin steady vortex tube, called a vortex soliton
named by Hasimoto (1972). The vortex soliton is one of the few steady solutions for
a vortex filament under the local induction approximation moving without changing
its shape (Kida 1981). The original observation of a vortex soliton in a rotating tank
experiment implies that a vortex soliton is endowed with the ability to transport
physical quantities, such as mass, kinetic energy, and linear and angular momenta,
from a turbulent region to a laminar one (Hopfinger & Browand 1982; Hopfinger,
Browand & Gagne 1982). In fact, transport of impulse and angular momentum by a
vortex soliton was calculated by one of the present authors, and as a direct application
of this result, the sound pressure in a far field based on the Lighthill vortex sound
theory could be derived (Kimura 1989). Later, the result was extended to the case
of two soliton interaction (Konno & Ichikawa 1995). Among others, mass is the
most fundamental and important quantity in the transport phenomena of the vortex
soliton, which has not been investigated.

As we shall see in the subsequent sections, the flow structure is much more
complicated in three-dimensional in contrast with two-dimensional flow fields. For
example, in place of a fixed point and surrounding closed orbits for two-dimensional
flows, a periodic orbit and surrounding invariant tori play central roles for the
transport in a three-dimensional vortex system. Unfortunately, there is no known
systematic method for finding a periodic orbit in a vector field, and thus hunting for
a periodic orbit is always associated with serendipity. We could verify numerically,
however, that there is at least one periodic orbit twining around the vortex core near
the loop of the soliton for a wide range of parameters which characterize the shape
of the soliton, and that invariant tori with finite volume surround the periodic orbit.
The structure and properties of the tori are investigated by using Poincaré sections
and calculating the winding numbers (Lichtenberg & Lieberman 1983). We could find
similarity between the KAM tori for non-integrable Hamiltonian systems.

The organization of the paper is as follows: the formulation and the methodology
are presented in § 2. In § 3, we shall show the numerical results on the transported
volume for various combinations of parameter values for the soliton and on the
topological properties of the invariant tori. Finally, discussion is given in § 4 where we
present a simplified model equation, the ‘chopsticks model’ to explain the mechanism
of the chaotic and integrable motion of particles around the vortex soliton.

2. Formulation
2.1. Vortex soliton

The Hasimoto vortex soliton is a solitary wave-type solution of the localized induction
equation (LIE) for the motion of an isolated vortex filament,

∂X
∂t

=
Γ

4π
log

(
L

ε

)(
∂X
∂s

× ∂2X
∂s2

)
, (2.1)

where X(s, t) is the position of the centreline of the filament parameterized by the
arc length s and time t . In (2.1), L and ε are two cutoff lengths, large and small,
respectively, and Γ is the circulation which is defined as a line integral of velocity
vector v along a loop c around the vortex filament. By means of the Stokes theorem,
Γ can be evaluated as the surface integral of vorticity vector ω over the surface S
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bounded by the closed curve c,

Γ =

∮
c

v · dx =

∫
S

ω · n dA.

The essential idea in deriving the LIE is to desingularize the Biot-Savart integral for
velocity around a vortex tube using the two cutoff length scales, L and ε (Hama 1962,
1963). The physical meanings these scales have are, negligence of the long-distance
effect on the self-induced motion for the former, and assumption that the filament is
thin with the constant core radius which can be approximated by the latter. Readers
interested in the history and derivation of the LIE should refer to the textbooks:
Batchelor (1967); Lamb (1980); Saffman (1992); Newton (2001) and review articles:
Leonard (1985); Majda (1991); Ricca (1991).

The secondary assumption attached to the derivation of the LIE is to set the
logarithmic self-induction coefficient in (2.1), a constant which is usually removed
by rescaling time. Hereinafter, however, we leave it as G > 0 in the equation. The
reasons for this are (i) to keep the consistency of time with that for the vortex filament
and that for the advected particles, and (ii) (following Batchelor) to investigate the
topological features of the flow field around the vortex as a function of the parameter.
Thus, our equation for the motion of the vortex tube is

∂X
∂t

= G
∂X
∂s

× ∂2X
∂s2

. (2.2)

Following Hasimoto (1972), the soliton solution for (2.2) is given with two additional
parameters ν > 0 and τ , where ν is related to the curvature of a soliton κ(s) by the
formula κ(s) = 2ν sech(νs) and τ is the constant torsion of a soliton. By denoting
X(s, t) = t(Xf (s, t), Yf (s, t), Zf (s, t)), we obtain

Xf (s, t) =
2µ

ν
sech{ν(s − 2τGt)} cos{τ (s − 2τGt) + (ν2 + τ 2)Gt},

Yf (s, t) =
2µ

ν
sech{ν(s − 2τGt)} sin{τ (s − 2τGt) + (ν2 + τ 2)Gt},

Zf (s, t) = s − 2µ

ν
tanh{ν(s − 2τGt)},




(2.3)

where µ = ν2/(ν2 + τ 2).
The motion of the Hasimoto vortex soliton consists of rotation around a fixed axis

(with a constant angular velocity) and translation (with a constant linear velocity)
of one space curve of infinite length. Kida (1981) contrarily used this condition of
congruent transformation upon the LIE as a criterion to characterize a class of vortex
filament solutions without deforming their shape which includes the Hasimoto vortex
soliton. We can verify this property by writing the solution (2.3) as

X(s, t) = A(t)x(σ ) + b(t), (2.4)

where x(σ ) = X(σ, 0), namely x(σ ) =t (xf (σ ), yf (σ ), zf (σ )) where

xf (σ ) =
2µ

ν
sech(νσ ) cos(τσ ),

yf (σ ) =
2µ

ν
sech(νσ ) sin(τσ ),

zf (σ ) = σ − 2µ

ν
tanh(νσ ),




(2.5)
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and σ = s − 2τGt . The pair of congruent transformation (A, b) is defined as

A(t) =


cos(ωt) −sin(ωt) 0

sin(ωt) cos(ωt) 0

0 0 1


 , b(t) =


 0

0

2τGt


 , (2.6)

where ω = (ν2 + τ 2)G.

2.2. Particle motion

We assume that fluid particles are advected by the velocity induced by the vortex
soliton through the Biot-Savart integral taken over the centreline of the vortex tube.
Under this assumption, the equation of motion of a fluid particle in the laboratory
frame is

dR
dt

=
Γ

4π

∫ ∞

−∞

X ′(s, t) × (R − X(s, t))

|R − X(s, t)|3 ds, (2.7)

where R(t) = t (X(t), Y (t), Z(t)) denotes the position of a particle, and X(s, t) is the
solution of the vortex soliton (2.6). By substituting (2.4) as well as R = A(t) r + b(t),
into (2.7), we can introduce a moving frame on which the vortex soliton is kept still
where r = t(x(t), y(t), z(t)) is the position of the particles observed from the moving
frame.

By making use of the relations such as dR/dt = (dA/dt)r + Adr/dt + db/dt and
the fact that A is an orthogonal matrix, we obtain

dr
dt

=
1

4π

∫ ∞

−∞

x ′(s) × (r − x(s))

|r − x(s)|3 ds + ω


 y

−x

0


 +


 0

0
−2τG


 . (2.8)

In (2.8), we have eliminated the circulation Γ by a suitable choice of time scale and
redefined the symbols G/Γ → G and ω/Γ → ω. We employ (2.8) as an autonomous
dynamical system for the motion of particles around the vortex soliton. The solution
to (2.8) with an initial condition t (x(0), y(0), z(0)) provides a triplet t (x(t), y(t), z(t))
which defines a trajectory in the three-dimensional phase space. Notice that the
second and the third terms on the right-hand side compensate for the rotation and
the translation, respectively, to make the vortex soliton steady.

Equation (2.8) possesses some scaling property and symmetry for parameters ν and
τ which enable us to reduce the parameter space for investigation of the solutions.
We can verify that if r̃(t) is a solution of (2.8) with the parameters (αν, ατ ), then
r(ξ = α2t) ≡ α r̃(t) is also a solution with (ν, τ ). In other words, the geometrical
properties of the solution such as the shapes of trajectories of particles are completely
specified by the ratio of ν to τ . In addition to the ratio, we use a condition, 2µ/ν =
2ν/(ν2 + τ 2) = 1 to determine the values of ν and τ , which imposes an auxiliary
condition that the diameter of the loop is always 1.

Also, we can see that if r(t) = t (x(t), y(t), z(t)) is a solution with (ν, τ ), r(t) =
t(x(t), y(t), −z(t)) is a solution with (ν, −τ ). Using this symmetry, we can restrict τ to
the positive without loss of generality.

Another property that the right-hand side of (2.8) holds is the reversible
symmetry by Moser (1973): the right-hand side, if denoted u(x), satisfies a relation
u(Ax) = −A u(x) concerning with a linear transformation A= diag(1, −1, −1). The
transformation has a property that A2 = id. (We should notice that this symmetry is
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Figure 1. Poincaré sections for trajectories of (2.8) with various initial conditions. The Poincaré
plane is located at y = 0. The parameter values are (ν, τ ) = (1.924, 0.3827) and (a) G =0.1832,
(b) G =0.3113. The solid lines indicate the vortex soliton projected onto the plane.

an extension of the symmetry for a Hamiltonian system of n degrees of freedom. For
the latter case, the same relation holds with A =diag(1, . . . , 1︸ ︷︷ ︸

n

,−1, . . . , −1︸ ︷︷ ︸
n

).)

For the numerical technique to evaluate the integral part in (2.8), first we divided
the integration range from (−∞, ∞) to [−L, L] + (−∞ − L] ∪ [L, ∞) where the range
[−L, L] is determined so that the velocity induced by the vortex tube outside this
range would be equivalent with the velocity that would be induced by a tentative
straight vortex filament replacing the vortex tube. Then, the range [−L, L] is divided
into small segments and the formula with a Gauss–Legendre polynomial of the
seventh order is used for each interval for integration. For the time marching for (2.8),
the fifth-order Runge–Kutta–Fehlberg formula with six stages is used.

3. Numerical results
As a canonical tool to analyse trajectories in a phase space of higher dimension

than two, the Poincaré section is well known. Figure 1 shows the Poincaré sections
for the trajectories of (2.8) with various initial conditions for two different values of
G (0.1832 and 0.3113). The Poincaré plane is located at y = 0, and a dot is placed
at a point on the plane every time a trajectory passes the plane transversally at the
point (Lichtenberg & Lieberman 1983).

On both the Poincaré sections, we can see that there are two large islands of
groups of nested curves (composed of continuous and broken lines) surrounded by
small islands and scattered points. Each large island has a centre which corresponds
to a single periodic orbit in the original three-dimensional space. Each nested curve
around the centre point, on the other hand, corresponds to an invariant torus around
the periodic orbit. The scattered points outside the islands show the trajectories of
particles flown apart from the loop by the uniform translational flow in the moving
frame.

The difference in G affects the size of the area of the large islands and the number
of secondary islands. From (2.8), on the other hand, we see that changing G results
in changing the translational and the rotational speed of the soliton. The change in
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Figure 2. Perspective view of a torus with the vortex soliton for (ν, τ ) = (1.924, 0.3827) and
G = 0.1832. The torus forms a knot with the loop part of the soliton.

the translation speed seems to cause the change in the area of the island while the
change in the rotation speed seems to produce the change of the twisting rate, or the
poloidal periodicity of the trajectories. We shall see the detail of these points later.

To understand the torus structure in three-dimension, we show a perspective view
of one surface of the torus with the vortex soliton in figure 2. The surface is
drawn with a net pattern whose threads in the toroidal direction are made of one
particle trajectory on the torus. It can be observed that the trajectory moves on the
torus while being twisted, and this twist suggests a non-zero winding number for the
trajectory. As a whole, the twisted torus makes a knot with the loop part of the vortex
soliton.

To see the structure of the tori in detail, the two levels of enlargement of figure 1
are presented in figure 3 ((a), (c) G = 0.1832, (b), (d) G =0.3113). The broken lines in
figure 1 are connected so that each layer can be identified clearly. The upper figures,
showing only the left half because of the symmetry, are primarily to visualize the
main and secondary islands. For smaller G, there are 5 secondary islands (figure
3a) whereas for the larger G there are 4 in a smaller more compact and round
shaped region (figure 3b). (Notice that the magnification is different.) The further
magnified views of other parts of the Poincaré sections are shown in figures 3(c) and
3(d). Both the figures show a hierarchical structure of smaller islands in a stochastic
sea of scattered points near the hyperbolic point between the secondary islands.
These features of chaos in the Poincaré sections, such as stochastic layers or the
Poincaré–Birkoff chain of islands, are similar to those for KAM tori for non-integrable
Hamiltonian systems even though the present system is three-dimensional and not a
Hamiltonian (cf. § 5).

As a quantity to characterize the properties of the tori, plots of the winding number
for the two values of G are presented in figure 4. Here, the winding number is defined
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Figure 3. Enlargement of Poincaré sections for (2.8) for (ν, τ ) = (1.924, 0.3827) with (a, c)
G = 0.1832 and (b, d) G = 0.3113. Only the left half is drawn for the above figures because of
the symmetry.
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Figure 4. Winding numbers W calculated by the formula (3.1) for (a) G = 0.1832 and (b)
G = 0.3113. The inverses of the values are plotted so that closed orbits with a period n give a
value n. The plateau in W occurs because range of angles is restricted in the secondary island.
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as

W = lim
N→∞

[
1

2πN

N∑
n=1

(f n(θ) − f n−1(θ))

]
, (3.1)

where f (θ) is the map of the polar angle variable measured with the period 1 orbit at
the centre in one (toroidal) period (circle map). The meaning of the winding number
is the average increase in the angle θ per toroidal period, or, in other words, the
ratio between the poloidal and toroidal periods ωP and ωT . The winding number
is calculated for each trajectory with an initial condition (x, z) = (x, 0) for varying
x. (The graphs are plotted after taking the inverses so that closed orbits with a
period n give a value n). Each (surface of the) torus seems to have a specific winding
number except for an interval of x where the winding numbers have a plateau which
corresponds to the region of a secondary island of tori. The varying winding number
in the group of the primary island of tori indicates a differential rotation inside, which
may cause a source of rapid mixing of materials inside the island. The plateau of W ,
namely 1/5 for G =0.1832 and 1/4 for G =0.3113, occurs because the range of the
angle is restricted in the secondary island. If the winding number ought to be defined
for a mapping from S1 to S1, W should be calculated with an nth iterated map for an
island which has an n periodic orbit as its centre, and the angle should be measured
from the centre.

The most interesting and fundamental quantity of the transport by the vortex soliton
is the fluid mass which can be estimated by calculating the volume surrounded by
the outermost torus. As we saw in figure 1, the cross-section of a torus has a different
area according to the parameters (ν, τ, G), and so does the transported volume. First,
figure 5(a) shows the range of parameter values for which a torus with a finite volume
is observed numerically. The crosses indicate the parameter values of τ and G which
allow a torus. Notice that we have imposed a relation 2ν/(ν2 + τ 2) = 1 to make the
size of the loop part almost 1. From this relation with the reality condition for ν

and τ , we have 0 <ν < 2, −1 <τ < 1. Only the result for 0 <τ < 1 is demonstrated
in figure 5(a) because of a symmetry in τ , but we can expect a torus for −1 <τ < 0
also. There is a clear boundary for the existence of a torus which is drawn as a solid
line in the figure. Also, we can see that a smaller G has a wider range of τ for the
existence of a torus, or, in other words, the torus structure is robust for smaller values
of G.

Next, figure 5(b) shows the volume of the torus as a function of G for several pairs
of ν and τ . The robustness for smaller G is endorsed by the large volume for any
combination of ν and τ . For a given G, a larger value of ν (which means a smaller τ )
always gives a larger value of the volume. However, the dependence of the volume on
G becomes weaker for larger ν (smaller τ ) which implies that the transported volume
is determined only by the shape of a vortex soliton asymptotically as ν → 2 (τ → 0)
which corresponds to a loop on a plane. To grasp the change in the shape of the soliton
according to ν and τ , we plotted three-dimensional figures of solitons in figure 5(c)
for some pairs of ν and τ chosen from those used in figure 5(a, b). The loop structure
and the two-dimensionality are more obvious for solitons with larger ν (and smaller
τ ), and these solitons transport more volumes. It should be pointed out, however,
that the soliton with a smaller τ translates with slower velocity, and thus if we
are concerned with the rate of transport which maybe evaluated as (volume) ×
(velocity), there should be optimized values of ν and τ for the maximum rate of
transport. In figure 6(a), we plotted this quantity, (volume) × (velocity), making use
of the data in figure 5(b). We can verify that the case with the smallest τ in figure 5(b)
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Figure 5. (a) Range of parameter values for which a torus with a finite volume is observed
numerically. There is a clear boundary for the existence of a torus with a finite volume.
(b) Volume of the outermost torus as a function of G for various combinations of (ν, τ ). The
volume is a monotonously decreasing function of G, but the rate of decrease is smaller for
smaller τ which corresponds to a more planar loop vortex. (c) Change in the shape of the
soliton according to the combinations of (ν, τ ) in (a) and (b). The loop is more planar for
smaller τ .

has a lower rate of transport than some other cases with larger τ in the region of
smaller G. Another case of ν and τ is added to the figure for which we could obtain
almost the maximum rate of transport throughout all G. The corresponding shape
of the soliton is plotted in figure 6(b). We can assert that this is a shape close to the
optimized vortex soliton for the maximum rate of transport.

To understand and extract the essential mechanism of the formation of tori
and the appearance of chaos as well as the transport of volume, we calculated
trajectories of particles for a truncated model system of a vortex soliton in which
only some parts of the filament have a non-zero contribution to the Biot-Savart
integral in (2.8) (leaving other terms unchanged.) Figure 7 shows the Poincaré section
and the three-dimensional perspective view of one torus with the vortex soliton
whose non-zero circulation parts are drawn by solid lines. The parameter values
are (ν, τ, G) = (1.924, 0.3827, 0.1832) which correspond to figure 1(a). Only small
portions of the loop filament can produce the qualitatively similar structure of tori
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Figure 6. (a) Plot of the rate of transport, (volume) × (velocity) from the data in figure 5(b).
The case with the smallest τ in figure 5(b) (×), which had the maximum transported volume,
has a lower rate of transport than some other cases with larger τ in the region of smaller G.
Another case of ν and τ (∆) is added which shows almost the maximum rate of transport
throughout all G. (b) The corresponding shape of the soliton for almost the maximum rate of
transport.
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Figure 7. Poincaré section and perspective view of a torus made by the truncated vortex
model. The part with non-zero circulation is drawn with a thick lines. All other parts are
neglected for calculating the Biot-Savart integral.

(both primary and secondary). We observe that the upper part of the tori is extended
upward perhaps because of the non-existence of the loop part, but the more important
thing is that the loop structure is not essential for making the tori.

The success of reproducing the torus structure by taking only the two segments of
the loop of the vortex soliton into account suggested that we should devise a further
simplified model, which we shall explain in the next section.
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Figure 8. (a) Velocity induced by a vortex stick of a unit length. The sum of the cosine
of the angles between the vertex and the end points appears as a factor in the formula.
(b) Configuration of a vortex soliton and two chopstick vortices which are tangent to the
soliton at A(x0, −y0, 0) and B(x0, y0, 0).

4. The ‘chopsticks’ model
As an extension of the truncated model in the last section, we propose a simplified

model, in which a loop vortex soliton is replaced with two straight-line vortex segments
(chopsticks).

Let us first review the velocity field induced by a straight vortex stick of unit length
in three-dimensional space. Of course, this model is meant to simulate a localized
effect of a strong vortex and lacks reality because a vortex filament never ends in
space owing to the solenoidal condition, div ω = 0.

Suppose one vortex stick with circulation Γ is located as in figure 8(a) with the
position vector of one end at a and the other at b. By denoting the unit direction
vector as t , the induced velocity at r by the vortex stick is given by

v(r) = (cos α + cosβ)
Γ

4π

t × (r − a)

|t × (r − a)|2 , (4.1)

where 0 < α, β < π/2 are angles between the vortex stick and the vertices drawn from
r to a and b, respectively. We see that the formula gives the same values by replacing
the vector a with any point vector on the line vortex. The above expression can be
derived by evaluating the Biot-Savart integral by the following integral formula,∫ x As + B

(s2 + ps + q)3/2
ds = 2

(Ap − 2B)s + 2Aq − Bp

(p2 − 4q)
√

s2 + ps + q
.

Notice that if the length of the vortex stick is extended to infinity, the end-effect
factor, cosα + cos β , goes to 2, which gives the velocity field by a straight line vortex
with infinite length. (We shall eventually use this approximation later.)

Now two vortex sticks are placed in three-dimensional space to model the particle
motion. They are arranged to be tangent to the soliton at two points, A(x0, −y0, 0)
and B(x0, y0, 0) (figure 8b). (The values of x0 and y0 are calculated numerically first
by solving zf (σ ) = 0 for σ in (2.5) and then substitute it to xf (σ ) and yf (σ ).) For
simplicity, we assume that both the sticks have a unit length with the coordinates of
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start and end points being

aA =


 x0 − cos φA sin θA/2

−y0 − sin φA sin θA/2

−cos θA/2


 , bA =


 x0 + cosφA sin θA/2

−y0 + sinφA sin θA/2

+cos θA/2


 ,

aB =


x0 − cos φB sin θB/2

y0 − sin φB sin θB/2

−cos θB/2


 , bB =


x0 + cosφB sin θB/2

y0 + sin φB sin θB/2

+cos θB/2


 ,

where the angles φA,B and θA,B are usual azimuthal and polar angles for tangent
vectors, respectively. (i.e. θ = 0: z-axis, θ = π/2, φ = 0: x-axis). (These parameter
settings are redundant to determine the configuration of two straight lines in three-
dimensional space. We use this settings, however, because we would like to keep
the vector expressions of the background rotation and translation simple.) From the
symmetry of the vortex soliton, we have the following relations between φA,B and θA,B{

cos θB = cos θA,

sin θB = sin θA,

{
cosφB = −cosφA,

sin φB = sin φA.
(4.2)

With the above symmetry conditions, the tangent vectors tA and tB become

tA =


cos φ sin θ

sin φ sin θ

cos θ


 , tB =


−cosφ sin θ

sin φ sin θ

cos θ


 . (4.3)

Replacing the Biot-Savart integral with (4.1) and substituting the symmetry
condition (4.2) into (2.8), we obtain the following model equation for the velocity of
a particle at x = (x, y, z). Notice that in the following model equation the end-effect
factor is 2 (infinite length approximation), and that the suffices A, B are removed
from φ and θ .

d

dt


x

y

z


 =

1

2π

1

|tA × (x − aA)|2


 sin φ sin θz − cos θ(y + y0)

cos θ(x − x0) − cos φ sin θz

cos φ sin θ(y + y0) − sin φ sin θ(x − x0)




+
1

2π

1

|tB × (x − aB)|2


 sin φ sin θz − cos θ(y − y0)

cos θ(x − x0) + cos φ sin θz

− cos φ sin θ(y − y0) − sin φ sin θ(x − x0)




+ (ν2 + τ 2)G


 y

−x

0


 − 2τG


0

0
1


 , (4.4)

where

|tA × (x − aA)|2 = (cos2 θ + sin2 φ sin2 θ)(x − x0)
2

+ (cos2 θ + cos2 φ sin2 θ)(y + y0)
2 + sin2 θz2

− 2 sin θ cos θ sin φz(y + y0) − 2 sin θ cos θ cos φ(x − x0)z

− 2 sin φ cos φ sin2 θ(x − x0)(y + y0)
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Figure 9. Poincaré section and perspective view of a torus made by the chopsticks
model (with infinite length).

and

|tB × (x − aB)|2 = (cos2 θ + sin2 φ sin2 θ)(x − x0)
2

+ (cos2 θ + cos2 φ sin2 θ)(y − y0)
2 + sin2 θz2

− 2 sin θ cos θ sin φz(y − y0) + 2 sin θ cos θ cos φ(x − x0)z

+ 2 sinφ cos φ sin2 θ(x − x0)(y − y0) .

It should be pointed out that the linearized equation still holds the reversible
symmetry by Moser. We can rewrite the right-hand side of the above equation with
the aid of a vector potential as

d

dt


x

y

z


 = ∇ ×

[
− 1

2π
log |tA × (x − aA)|tA − 1

2π
log |tB × (x − aB)|tB

+ 1
2
(ν2 + τ 2)G


 0

0
x2 + y2


 + τG


 y

−x

0





 , (4.5)

which may help to understand the chaotic behaviour of the dynamical system (see
§ 5).

By linearizing the stationary solution (2.5) with (ν, τ ) = (1.924, 0.3827) around
(x0, y0, 0) where x0 = 0.29324 and y0 = 0.111538, we have{

cos θ = 0.72761,

sin θ = 0.68599,

{
cos φ = 0.9897,

sin φ = −0.156275.
(4.6)

Figure 9 is the Poincaré section and the three-dimensional view of one torus for
particle trajectories calculated with the chopsticks model (4.4). The parameter values
are the same as those for the truncated model in figure 7. A similar torus structure
is obtained for the original vortex soliton and the truncated model. In the Poincaré
section, the primary island of tori is evident, but small secondary islands can also be
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Figure 10. Comparison of the volume of the outermost torus as a function of G for three
different combinations of ν and τ . (a) Vortex soliton (excerpts from figure 5), (b) chopsticks
model.

observed. The boundary of the torus is extended more in the upper direction than in
the truncated model.

The transported volumes for the chopsticks model are calculated for some com-
binations of parameters and demonstrated as a function of G in figure 10. For
comparison, the corresponding plot for the original vortex soliton, which is a subset
of figure 5, is added. A similar parametrical tendency is observed for the chopsticks
model. We should note that the change in the parameters ν and τ results only in
the change of angles between the chopsticks while it provides the change of the
three-dimensional shape of the vortex soliton for the original model.

A discrepancy in the transported volume between the chopsticks model and the
vortex soliton is observed in figure 10, particularly when the shape of the vortex
soliton is almost planar (i.e. τ → 0). One possible reason for this discrepancy is that
most of the segments of the loop would have a similar contribution in the Biot-Savart
integral for the planar case. This global feature would be out of the scope of the
chopsticks model which concentrates on the local interaction of segments near the
crossing point. For the motion of an almost planar vortex soliton, Aref & Flinchem
(1984) proposed a model in which a vortex soliton is replaced by a vortex ring and a
straight-line filament. This model might work also as a model for the explanation of
transport. If the global effect is dominant, we predict that a torus would appear near
the centre region of the vortex ring. Keeping this expectation in mind, we plotted
the Poincaré section for an almost planar soliton in figure 11. While the edge of the
outermost torus extends towards the centre of the ring, the centre of the torus is
close to the crossing point of the soliton, and thus we can argue that the torus would
be localized enough near the crossing point and that the chopsticks model is still
effective. Also it should be noted that the cross-section consists of continuous and
dotted lines which correspond to (pseudo) periodic orbits, and no hyperbolic points
or chaos are observed. For the numerical reason, this almost planar vortex soliton
still has slight but non-zero torsion. It may be interesting to see whether the torus
occurs only with periodic orbits in the limit of τ → 0.
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Figure 11. Poincaré section for an almost planar loop vortex soliton with
(ν, τ,G) = (1.99144, 0.130526, 0.18323).

5. Results and discussion
We have demonstrated that a vortex soliton can carry fluid particles inside a domain

with a finite volume that makes a knot with the loop of the vortex soliton. Each
trajectory of a particle inside the domain forms a surface of a torus with a specific
winding number. Groups of tori make a hierarchy of islands, and chaotic trajectories
appear near the hyperbolic points between the secondary and higher-order islands.
Then, we investigated the transport properties of the vortex soliton by calculating
the volume of the domain for various combinations of parameters specifying the
shape and the inner core of the soliton. For the analysis of the formation of tori
and the transport of volume, we proposed the chopsticks models, which succeeded in
reproducing the torus structure and the dependence of the volume on the parameters
qualitatively. From the success of the chopsticks model, it may be conjectured that
the crossing configuration of the vortex chopsticks is the most fundamental structure
for the above phenomena.

In this section, we shall discuss a possible mechanism for producing the chaos in
the chopsticks model. The first conventional approach to investigate a given chaotic
system may be to search for a decoupling of the system into an integrable part, which
produces analytic structures such as a torus, and a perturbing part, which breaks up
the circumference of an integrable torus by a mechanism of resonance. Such a scenario
works very well, particularly for Hamiltonian systems with two degrees of freedom,
and widespread research has been done (Lichtenberg & Liberman 1983; Ottino
1989) Unfortunately, our present model is a three-dimensional dynamical system
which shows different aspects from a Hamiltonian system in an even dimensional
space. Although there are some mathematical theories for analysing three-dimensional
integrable systems (see, for example, Olver 1986), as far as we know, we do not have a
canonical tool to extract an integrable part from a given three-dimensional dynamical
system. Therefore, our following effort may only look ad hoc.

The first idea stems from a belief that any integrable velocity field associated with
the chopsticks should be subject to a configuration with a high symmetry. We can see
that the azimuthal angle φ is small, and it may be natural to treat this quantity as a
perturbation parameter.
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If we approximate cosφ ∼ 1, sin φ ∼ φ and neglect the terms of order φ2 or higher,
the right-hand side of (4.4) can be decoupled into unperturbed and perturbing parts,

d

dt


x

y

z


 =

1

2π


(

1

F
+

1

H

)
 − cos θy

cos θ(x − x0)
sin θy0


 +

(
1

F
− 1

H

) 
− cos θy0

− sin θz

sin θy







+
φ

2π


(

G

F 2
+

K

H 2

)
 − cos θy

cos θ(x − x0)
sin θy0


 +

(
G

F 2
− K

H 2

) 
− cos θy0

− sin θz

sin θy




+ sin θ

(
1

F
+

1

H

)
 z

0
−(x − x0)





+ (ν2+τ 2)G


 y

−x

0


−2τG


0

0
1


, (5.1)

where

F = (cos θ(x − x0) − sin θz)2 + (y + y0)
2 ,

G = 2 sin θ(y + y0) (cos θz + sin θ(x − x0)) ,

H = (cos θ(x − x0) + sin θz)2 + (y − y0)
2 ,

K = 2 sin θ(y − y0) (cos θz − sin θ(x − x0)) .

As a summary, the unperturbed part corresponds to a situation where two chopsticks
are located symmetrically on the planes of y = ±y0, and the perturbation breaks the
symmetry by opening one end of the chopsticks.

The second idea is about the vector potential expression of the dynamical system
(4.5). Vector potentials are important in electromagnetic theory, but their roll in
characterizing a dynamical system is not obvious. The situation is different from that
for a dynamical system with a scalar potential. In fact, if a dynamical system is given
in terms of a scalar potential, like ẋ = ∇f (x), the level sets of its solutions are always
equi-contour surfaces of the potential f (x). On the other hand, for a vector potential
providing an integral of motion, its existence does not necessarily mean reduction of
a solution space of any kind. As our example shows, a system with a vector potential
may show both integrable or chaotic behaviours.

Another point relating to the vector potential expression is that any solenoidal
vector field can be written as a sum of a toroidal and a poloidal vector field about
an axis. If we use this fact, any solenoidal dynamical system can be expressed as

d

dt
x = ∇ × (φ(x) ẑ) + ∇ × ∇ × (ψ(x) ẑ) ,

where φ(x) and ψ(x) are scalar functions. (Chandrasekhar & Kendall 1957; Yoshida
& Giga 1990) Note that the above expression is a natural extension of the
streamfunction expression for two-dimensional solenoidal flows to three-dimensional
cases. By changing the combination of the scalar functions, we can have various
three-dimensional integrable and chaotic dynamical systems (Arter 1983; Holm &
Kimura 1991). Looking at (4.5) from this perspective, we notice that the second and
the third terms in the right-hand side can be written as

∇ ×
[

1
2
(ν2 + τ 2)G(x2 + y2) ẑ

]
+ ∇ × ∇ × [τG(x2 + y2) ẑ], (5.2)

where ẑ = t(0, 0, 1), which provide the toroidal and poloidal vector fields. Coupled
with the first term which comes from the nonlinear interaction of the two chopsticks,
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these background vector field make the flow field complex in a three-dimensional
space. The true effect of these background flow must be analysed.

Lastly, we would like to make a comment on the reversible symmetry which both the
original equation and the chopsticks model satisfy. Moser (1973) showed the possibility
of a discussion about the non-integrability of systems with reversible symmetry. He
presented a theorem similar to the KAM theory for an even-dimensional reversible
system. We understand that applicability of the theorem to odd-dimensional systems
such as the models in this paper is still an open problem.

So far, we can demonstrate that a vortex soliton, which is a one-class solution
for the motion of a vortex filament without changing its shape by Kida (1981), can
transport a fluid volume. As the next stage of the problem, it may be of interest
to study particle transport by other types of solitary wave (Maxworthy, Hopfinger
& Redekopp 1985) and unsteady interacting waves on a vortex filament (Aref &
Flinchem 1984). We hope that the chopsticks model might give some insights into the
mechanism of particle transport in those problems.

Advection of particles by a vortex soliton, may be classified as an example of
three-dimensional chaotic advection (Aref 1984, 2002). The characteristic idea of
chaotic advection can be described by a statement that ‘even an integrable Eulerian
flow field can produce chaotic motions for Lagrangian particles’, which captures
the feature of our subject well. If we notice, however, that the Eulerian flow field
is particularly generated by a soliton, and that the advected volume has compact
topological properties which are subject to the shape of the soliton, we may call this
problem especially ‘soliton advection.’

The authors are grateful to Professor Shigeo Kida and Professor Masahiko Kanai
for valuable comments and discussions.
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